Objectifs pédagogiques de la formation

L’objectif est de vous permettre de mettre en évidence, sur vos données, les structures / tendances pour expliquer les phénomènes observés et estimer les évolutions à venir (trend d’acquisitions, résiliations par exemple).

 

Programme de la formation

Introduction aux séries temporelles
  • Principes et Apports des techniques de Prévision. 
  • Exemples d’application dans différents secteurs d’activités.
  • Les différents types de données pouvant être prises en compte dans les Prévisions pour augmenter la précision.
Les principales techniques
  • Méthodes de Lissage, Modèles Autorégressifs, ARIMA, SARIMA, Séries chronologiques multi variées, Méthode X11 
  • Rappels théoriques
  • Contexte d’application 
  • Exemples et Interprétation des résultats obtenus
La démarche projet
  • Principales étapes de construction de modèles de prévision :

Cadrage du besoin

  • Préparation des données 
  • Echantillonnage
  • Modélisation 
  • Validation du modèle
  • Mise en œuvre opérationnelle. 
  • Partage de Bonnes Pratiques en fonction des méthodes et problématiques
Application
  • Construction de modèles de prévision en fonction de vos problématiques (sur vos données, et le logiciel de votre choix entre R, SAS, Python ou IBM SPSS Modeler) 

 

Profil du formateur

Formateur consultant expert en DATA SCIENCE

 

Modalités d’évaluation

Auto-évaluation des acquis par le stagiaire via un questionnaire en ligne Attestation de fin de stage remise au stagiaire

 

Méthode pédagogique

1 poste et 1 support par stagiaire 8 à 10 stagiaires par salle Remise d’une documentation pédagogique papier ou numérique pendant le stage La formation est constituée d’apports théoriques, d’exercices pratiques, de réflexions et de retours d’expérience